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LETTER TO THE EDITOR 

Replica symmetry breaking in weak connectivity systems 

C De Dominicis? and P MottishawS 
t Service de Physique Theorique, CEN Saclay, 91 191 Cif-sur-Yvette Cedex, France 
$ Department of Theoretical Physics, University of Oxford, Oxford OX1 3NP, U K  

Received 20 October 1987 

Abstract. We propose a generalisation of Parisi’s replica symmetry breaking scheme to 
spin glasses (or optimisation problems) described by a set of order parameters Qt,’ or 
equivalently by a global order parameter G{ua}, rather than by Qy:a, alone. We study 
the particular case of Derrida’s p-spin model in the very dilute limit. The model is solved 
exactly in the large p limit and a freezing transition occurs. Using replicas and a single 
step of our replica symmetry breaking ansatz we recover the exact result. We discuss the 
implications for the global order parameter G{u,} when more than one step in the replica 
symmetry breaking process is taken. 

1. Introduction 

Consider dilute random bond systems with a bond probability distribution 

9(JlJ) = (1 - Y)S(J,,) + YP(J,) (1) 

where (1 - y )  is the fraction of absent bonds and for simplicity we keep to the spin 
glass with symmetrical p. Such spin systems are described in general by a set of order 
parameters Qc,’ o L ~ ,  one for each choice of r distinct replicas. These systems can be 
approached from two opposite limits. 

( i )  Strong connectivity c = yz ( y -  1, z is the number of neighbours) and weak 
bonds with a characteristic bond strength J - Jo/z’/’. As z + 00 (or z = N )  one recovers 
the Sherrington and Kirkpatrick (1975, hereafter referred to as SK) limit. In that limit 
one only needs the order parameter 

(ii) Weak connectivity c = a ( y  = a / z )  and strong bonds J. As z +CO the Viana 
and Bray (1985, hereafter referred to as VB) limit is recovered. In contrast, this limit 
still involves all Qt: a ,  . If the bonds in turn become weak like J - Jo(a)’/’, a +CO, 

the VB limit yields the same leading term as the SK limit. 
Near T,, in either of these limits one can describe the system with ‘few’ order 

parameters, viz QL2,)w2= (cT~,(T,~) and Qbp,’ oL4= ( c T ~ ,  . . . aU4) (or Q‘” alone after elimina- 
tion of 0‘“’ via its equation of motion). Stability of the replica symmetric ( R S )  ansatz 
has been discussed in De Dominicis and Mottishaw (1986) with the condition 

(2) z .C:( 1 - 1/37)  

for RS stability. Note that the VB limit y + 0 is a worse starting point from the point 
of view of RS stability since there the right-hand side of (2) is always negative in that 
limit. 

In optimisation problems or near T = 0 all Q“’ are equally important which has 
led Mdzard and Parisi (1985) and Orland (1985) to introduce a global order parameter 
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+'lr ds 
--j.17 27~i  

zb, = z 5-y du - In 15 d J P ( J )  exp(PJs) 

built with all the Q'r)  of the problem. This approach has been extended to spin 
problems by De Dominicis and Mottishaw (1987a, b) by introducing the global order 
parameter G{ uc,} 

exp(us)(tanh u ) ~ .  (4) 

where, when rf 0, 

In the V B  limit we have 

zb, = a dJp(J)(tanh PI)'  I 
for r even (and zb, = 0 for r odd), i.e. bzr > b2r+2 ,  the 'masses' are ordered (which is 
not the case in general). In the RS case G{ua}= G ( S = L  ua) satisfies the equation 
of motion 

x exp(G(y)) exp(ux+ uy) exp[s tanh-'(tanh u tanh U)]. 

In the VB limit (6) becomes, with g ( S )  = a + G(S) to keep previous notation, 

x exp[s tanh-'(tanh p J  tanh U)] (7)  
a simplified equation of motion independently derived by Mkzard and Parisi (1987) 
and Kanter and Sompolinsky (1987). These authors also proposed a simple ansatz 
for (7) which was proved to be unstable by Mottishaw and De Dominicis (1987). A 
new ansatz containing (in some limit) a continuous component has been proposed by 
Wong er al (1988) for a related problem. However, it is not yet known whether this 
more elaborate ansatz is RS stable or not. In any case the question remains: how does 
one treat RS breaking when one has an infinite number of components Q(,) or a g{uo} 
function? 

In this letter we consider first the simplest case where one has to break RS, namely 
spins interacting in p-plets ( p  + CO) as introduced by Derrida (1980, 1981) 

with J, ,  ,p a random coupling, taken here in the weak connectivity limit. In P 2 we 
briefly recall the results of Derrida in the strong connectivity ( y =  1) limit and the 
analysis of Gross and MCzard (1984) describing the spin-glass phase in terms of QL2,)OL2. 
In § 3, we extend the results of Derrida for y<< 1 and give the exact result for the free 
energy. In § 4, we show how to describe the condensed phase in terms of the Q:,) O L , .  

A one-step RS breaking scheme is proposed and shown to lead to the exact answer 
derived in § 3. In § 5 we describe RS breaking with two or more steps and its connection 
with the global order parameter g { a } .  In addition one explicitly obtains, when p ( J )  
is discrete, two distinct transtions (percolation and spin glass) at T=O, a feature 
discussed most recently by Bray and Feng (1987). 
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2. Strong connectivity, weak bonds 

This is Derrida’s model with y = 1, J 2  = J i p ! /  N P - ’ .  

El . . . E M ,  showing that, as p + 00, it factorises into 
Derrida has evaluated the probability to have M configurations with energies 

M 

P(EI, * * * E M ) =  n p ( E a )  (8) 

P( E )  - exp(-E2/J&N). (9) 

-pf= (pJo)*/4+ln 2+ln cosh p h  (10) 

a = l  

This property enabled him to obtain the entropy and hence the free energy ( p  = 1/ T ) :  

for T >  Tc(h) ,  where Tc(h)  is a de Almeida and Thouless (1978) line given by the 
condition of zero entropy: 

s ( T J  = 0 =  -(Jg/4Tc(h))+ln2+ln cosh(h/Tc(h))-(h/Tc(h)) tanh(h/T,(h)). (11) 
For T < Tc(h) ,  in the frozen (spin-glass) phase, the free energy 

f ( T )  =f(Tc(h))  (12) 
is frozen and the entropy remains null. 

Approaching the problem in the standard replica fashion, Gross and MCzard (1984) 
were able to recover (10)-(12) and, at the same time, to give a description of the 
condensed phase in terms of the order parameter Qk’,k, (and of a conjugate constraint 
variable Abf,b.,). The remarkable feature was that a one-step RS breaking, as in Parisi 
(1979), was enough to lead to the exact ( lo)-(  12) result, with Qbf,’,,taking two values 
(for ( a l a z )  in the diagonal or off-diagonal blocks). 

3. Weak connectivity, strong bonds: exact result 

Here we now take y = ap!/2NP-I in the bond probability ??(Ji,,,,,,ip). 
As in § 2 we now evaluate P ( E l  . . . E M )  in the form 

d i  
Q( E,; 2) = g exp[ikE, - i2 In cosh(iJk)] (14) 

R ( 2 )  = dx e ~ p { 2 ~ i x 2 + f a [ e x p ( 2 ~ x )  - l]} (15) I 
for N > > p > >  1. From (13)-(15) one then derives in the ( p + m ,  N + m )  limit the free 
energy 

(16) 
for T > Tc(h; a). Here we have used a discrete (symmetrical) distribution p ( J )  localised 
at *Jo. In general, one has to replace the lncosh of (16) (and (14)) by an average 
over p ( J ) ,  e.g. in (16) 

-pf= fa In cosh pJo+ In 2 +In cosh p h  

p (  J )  exp( p J )  dJ. (17) 
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For T <  T J h ;  a ) ,  i.e. below the de Almeida-Thouless line, the free energy remains 
frozen (and the entropy null). 

Note that again if J c l + J O / a l " ,  a -+CO, one recovers Derrida's result (10). 
In the zero-temperature limit (16) yields 

s ( T  =0) = (In 2)( 1 - - fa ) .  

a < a , = 2  (19) 

(18) 

That is, for a discrete distribution, the entropy remains positive down to T = 0 if 

yielding a spin-glass transition for a, = 2 (a continuous distribution leads to a vanishing 
of the entropy at T>O). The percolation transition is easily established (e.g. via a 
geometrical argument) to occur at 

ap = 2 / p ( p  - 1) -+ 0 (20) 

in this model (cf the discussion in Bray and Feng (1987)). 

4. Weak connectivity, strong bonds: replica approach 

The free energy is easily written as 

-Pfn = - 1 Q',:' ..,,i~k',)...,,+ 4a c b, c CQ'6,)!.,,)p 
+ lnZ+ ' , an  lncoshPJ,,+n In2 

r = 2  ( m  l . . . m r )  r = 2  ( m , . . . m r )  

with b, as in (S), and 

( 2 1 )  

where A ( r )  is a constraint variable. 
If one wants to introduce a one-step RS breaking (first step in the Parisi process), 

one writes a = ( K ,  y )  where K is the box number ( K  = 1,2, .  . . , n / m )  and y the replica 
number in a box ( y  = 1,2, . . . , m ) .  The order parameter Orl' ...,, is now characterised 
by the number of boxes with one spin ( v ~ ) ,  the number of boxes with two spins ( v 2 ) ,  
etc, i.e. by a partition {v,}, of r, such that 

v, = r. 
1 = I  

We write 

QL'l!..ur OIL:) ( 2 4 )  

e.g. for r = 2,  one has Q\?= Q!:r2 (the former off-diagonal component in the Qmp 
matrix after one step of the Parisi process) and Q:" = Q\IL (the former diagonal block 
component). Here and below we freely use two equivalent notations: the notation as 
in ( 2 4 )  and a more cumbersome, but more explicit, one where the partition is fully 
displayed as 11 or 2 for the two partitions of ( 2 ) .  

- , Q(4)=  22 - Q(4)  u 2 = 2 ,  * 

Q!$)= 
For r = 4, one has Q(i?ll = QCL4; 0'14: = Q14L2,Y2= ; Q!:) = Q14L 

corresponding to the five possible partitions of (4). 
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We need to define the spin functions 

where in (25) the summation is restricted to a given partition { v , } ~  of the r spins into 
the n / m  boxes K ,  i.e. satisfying (23). These turn out to be polynomials in the S,  (U r ) :  

e.g. 

rlfL2= ( + K , ( + K , = $ [ ( s l ) ’ - s 2 ] .  
( K i K 2 1  

The free energy then becomes 

+$an In cosh p J o +  n In 2 

i.!?,,(m)’”+ln2cosh i .$-l(m)2u-‘)]} (28) 

From (28) and (29) via the use of the identity 

r\lif(S2, = O ;  S 2 , - ,  = m’”-’ d / d X )  In cosh X 

one derives the non-trivial stationarity condition 

Qi ; \  = (tanh ~hm)’L?’>~,-i. (31) 

This recovers the Gross and MCzard result: 

Q:f’ = tanh’ phm (32) 

(33) Q:” = 1 

and extends it to all order parameters, e.g. Q::: I = tanh4 phm,  QI:’ = Q(,l: = tanh’ phm, 
Qg)= ai4)= 1, etc. Using (31) and the corresponding stationarity for A i l \  one obtains 

-pfn =$a c br rl;\(S, = mu-’)  
r = 2  { U )  

+ f a n  lncoshpJ,+n I n 2 + ( n / m ) l n 2 c o s h p h m  (34) 
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i.e. after summation 
a 1 

- f  = - In cosh(pmJ,) +- In 2 cosh pmh. 
2(” P m  

As in Gross and MCzard, the free energy is a function of the product p m  nd st ti 

(35 )  

narity 
with respect to m is identical to zero entropy with m = T /  T,( h ;  a )  in the spin-glass 
phase. At the boundary m = 1 and (35)  gives the free energy of the paramagnetic 
phase, thus recovering the results of § 3.  

5. Two-step (or more) RS breaking 

The parametrisation is easily inferred for two (or more) steps of RS breaking. The rule 
is that each new step introduces a new partitioning of the elements of the previous 
partition, e.g. if, at step one, we have (for r = 4) the five partitions 

(1111) ( 1 ; 3 )  ( 1 1 ; 2 )  ( 2  2) (4). 
At step two they become 

( 1 ; 3 )  + (1 ;  l;l) (1;  11; 2 ) (1;;) 

Note that the number of independent r-order parameters (after step one) N ! )  is 
given by the Euler generating function 

r 

x“:” = n (1 - x”)-’. 

x y“;” = n (1 - NZ‘)xq)-I 

(36)  , q = I  

After step two 
a- 

r q = I  

with obvious generalisations. 
The spin functions of 0 4 are now (after step two) functions of Su.v: 

(37 )  

( + K , L . ~ .  

The global order parameter g ( S )  becomes g { S , }  after step one and g { S , , }  after step 
two and the equations of motion replacing ( 6 )  or (7) are easily derived from the one 
for G{u,}: 

2, = T,’ exp( G{ T } )  (40) 
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or in the VB limit, with g{u,}  = a + G{a,}, 

dum} = a I d J p ( J )  T e x p  

L1273 
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